
Math 5525 Midterm 1 Solutions March 2013

1. Find the formula for the solution x(t) of the problem

x′ +
x

1 + t
= 1, x(0) = 0 ,

in the interval (0,∞).

Solution:

There are many ways to do this problem. One can use for example formula (2.14)
in the textbook (or formula (23) in the lecture log). One can also proceed just
by the rule “first solve the homogeneous equation and then do the variation
of constants”. Here we will do the calculation by using the last mentioned
procedure. The homogeneous equation x′+ x

1+t = 0 can be solved by integrating
dx
x = − dt

1+t (“separation of variables”). The general solution of the homogeneous

equation is x(t) = C
1+t , and hence we should seek the solution the inhomogeneous

equation as x(t) = C(t)
1+t . Substituting the expression into the equation and using

the initial condition x(0) = 0, we obtain C(t) =
∫ t

0
(1 + t)dt = t + t2

2 . Hence

x(t) =
t+ 1

2 t
2

1+t .
Several students noticed that there is a quick way to solve the equation by re-
writing it as [(1 + t)x]′ = 1 + t. Integration of this identity between 0 and t
together with x(0) = 0 then gives (1 + t)x(t) = t+ 1

2 t
2, which for t ∈ (0,∞) is

of course the same as x(t) =
t+ 1

2 t
2

1+t .

2. For a ≤ 1 find the formula for the solution x(t) of the problem

x′ =
x2

t2
, x(1) = a ,

in the interval (1,∞).

Solution:

We write the equation as dx
x2 = dt

t2 and integrate the left-hand-side between a and
x [= x(t)] and the right-hand side between 1 and t. We obtain − 1

x+
1
a = − 1

t +1.
Therefore x = x(t) = 1

1
t+

1
a−1

= at
a+t(1−a) . (There are many other ways in

which the formula can be written,of course.) Instead of using definite integrals

(
∫ x

a
dx̃
x̃2 =

∫ t

1
dt̃
t̃2
) one can use indefinite integrals and write

∫
dx
x2 =

∫
dt
t2 + C,

which after integration gives − 1
x = − 1

t + C. The value of C is then calculated
from the initial condition: at t = 1 we must have − 1

a = −1
1 + C, which gives

C = 1− 1
a , leading of course to the same formula for x = x(t) as above.

3. A point moves on a smooth horizontal surface. Assume the motion is along
a straight line and is governed by the equation

x′′ + γx′ = 0 ,
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where γ > 0 is a coefficient of friction and x = x(t) is the coordinate of the point
in some natural coordinate system on the line. For concreteness we can assume
that x is measured in meters and the time is measured in seconds. Assume that

x′(0) = v > 0 .

Show that – according to our equation – the motion of the point will never stop,
but the distance

d = lim
t→∞

(x(t)− x(0) )

is always finite. Determine γ if we know that for v = 1 [meter per second] we
have d = 10 [meters].

Solution:

We are dealing with a second order equation with constant coefficients. The
characteristic equation is λ2 + γλ = 0, with the roots λ1 = 0 and λ2 = −γ.
The general solution therefore is x(t) = C1e

0·t + C2e
−γt = C1 + C2e

−γt . The
initial condition x′(0) = v implies C2 = − v

γ and we see that x(t) − x(0) =
v
γ (1− e−γt). The velocity x′(t) = ve−γt cannot vanish for any t > 0 as v > 0 by

our assumptions, and we also see that the limit d = limt→∞ (x(t)− x(0)) exists,
is finite and, in fact, d = v

γ . Therefore γ = v
d . For our specific values of v and

d we obtain γ = 1
10 sec−1 .

4. Consider the 2× 2 system of equations

ẋ1 = −x1 + ax2 ,
ẋ2 = x1 − x2 ,

where a ∈ R is a parameter. Find all values of a for which the the system has
both of the following two properties:

• All solutions on the interval (0,∞) approach a finite limit as t → ∞. In
other words, for j = 1, 2 the limit limt→∞ xj(t) exists and is finite.

• There exists at least one solution in (0,∞) for which the quantity
x2
1(t) + x2

2(t) does not approach 0 as t → ∞.

Solution:

We are dealing with a 2×2 system of the form x′ = Ax with A =

(
−1 a
1 −1

)
.

The characteristic polynomial of A is det(A−λI) = (−1−λ)2−a = (1+λ)2−a.
The eigenvalues are found from the equation (1+λ)2−a = 0, which is the same
as λ = −1±

√
a. Let us denote λ1 = −1−

√
a and λ2 = −1+

√
a. If a < 0, the

eigenvalues will be complex. Let us now consider two cases:

Case 1: a ̸= 0. In this case we have λ1 ̸= λ2 and hence there exists a basis
of C2 consisting of eigenvectors. Let x(1), x(2) be such a basis, with Ax(k) =

2



λkx
(k) , k = 1, 2. (We do not have to calculate x(1), x(2) explicitly to solve this

problem.) The general solution of our system is x(t) = C1x
(1)eλ1t +C2x

(2)eλ2t.
Denoting by ℜz the real part of a (possibly complex) number z, we note that
ℜλ1 ≤ −1 and hence limt→∞ C1x

(1)eλ1t = 0 for any a. For a < 1 we also have
ℜλ2 < 0, and hence limt→∞ x(t) = 0 for any solution. Hence no a < 1, a ̸= 0
will satisfy the second condition required in the formulation of the problem. We
have ruled out all a < 1, a ̸= 0 as solutions.
For a > 1 we have λ2 > 0, and for C2 ̸= 0 we have limt→∞ |C2x

(2)eλ2t| = +∞.
Hence for a > 1 there always are solutions of the system which will not satisfy
the first condition in the formulation of the problem. We have ruled out all
a > 1 as solutions.
When a = 1, we have λ1 = −2, λ2 = 0 and the general solution is x(t) =
C1x

(1)e−2t + C2x
(2). These functions have a finite limit C2x

(2) as t → ∞.
Moreover, the limit is non-zero if C2 ̸= 0. Hence for a = 1 the system will
satisfy both requirements in the formulation of the problem.

Case 2: a = 0. In this case we have a double eigenvalue λ = −1. As the
eigenvalue is strictly negative, it is reasonable to expect that all solutions will
converge to 0 as t → ∞.1 One can verify this in several ways. If we do not wish
to use the matrix exponentials or other “general principles”, we can proceed with
a verification “by hand”.2 Note that, as we now assume a = 0, the first equation
of the system is ẋ1 = −x1, with the general solution x1(t) = C1e

−t. The second
equation then is ẋ2 = −x2 + C1e

−t. The general solution of the homogeneous
equation ẋ2 = −x2 is c2e

−t, and we seek the solution of the inhomogeneous
equation as x2(t) = c2(t)e

−t. This gives c′2(t) = C1, and therefore c2(t) = C1t+
C2. Thus the general solution of the system is given by x1(t) = C1e

−t, x2(t) =
C1te

−t +C2e
−t. All these solutions converge to 0 as t → ∞, and hence a = 0 is

ruled out as a solution to our problem.
Putting together the conclusions from both Case 1 and Case 2, we see that a = 1
is the only solution to our problem.

Instead of using the calculation “by hand” we can use the matrix exponentials.
The general solution of the system can be written x(t) = etAx(0), where x(0) ∈

C2. For a = 0 our matrix is of the from −I + J , with J =

(
0 0
1 0

)
. Note

that J2 = 0 and hence etJ = I + tJ , which gives etA = et(−I+J) = e−tIetJ =(
e−t 0
te−t e−t

)
.

For a ̸= 0 we have etA = P

(
eλ1t 0

0 eλ2t

)
P−1 for a suitable regular matrix

P and consideration similar to those above again show that a = 1 is the only
solution to our problem.

1One can in fact prove that for any n×n matrix A for which all the eigenvalues are strictly
negative (multiple eigenvalues are allowed) all solutions of ẋ = Ax converge to 0 for t → ∞
with an exponential rate. The proof is an easy application of the Jordan canonical form.

2We did such a calculation in lecture 17, see the lecture log, system (309) on page 60.
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